python 集合的使用,案例详解

集合的定义:

1.不同元素组成

2.无序

3.集合中的元素必须是不可变类型

创建集合

s = {1,2,3,4,5,6,7,8}
>>> set_test = set('hello')
>>> set_test
{'h', 'l', 'e', 'o'}  # 由此可见集合中的元素不可重复,都是不同的

集合运算

集合之间也可进行数学集合运算(例如:并集、交集等),可用相应的操作符或方法来实现。

子集

子集,为某个集合中一部分的集合,故亦称部分集合。

使用操作符 < 执行子集操作,同样地,也可使用方法 issubset() 完成。

>>> A = set('abcd')
>>> B = set('cdef')
>>> C = set("ab")
>>> C < A
True         # C 是 A 的子集
>>> C < B
False
>>> C.issubset(A)
True

并集

一组集合的并集是这些集合的所有元素构成的集合,而不包含其他元素。

使用操作符 | 执行并集操作,同样地,也可使用方法 union() 完成。

>>> A | B
{'c', 'b', 'f', 'd', 'e', 'a'}
>>> A.union(B)
{'c', 'b', 'f', 'd', 'e', 'a'}

交集

两个集合 A 和 B 的交集是含有所有既属于 A 又属于 B 的元素,而没有其他元素的集合。

使用 & 操作符执行交集操作,同样地,也可使用方法 intersection() 完成。

>>> A & B
{'c', 'd'}
>>> A.intersection(B)
{'c', 'd'}

差集

A 与 B 的差集是所有属于 A 且不属于 B 的元素构成的集合

使用操作符 - 执行差集操作,同样地,也可使用方法 difference() 完成。

>>> A - B
{'b', 'a'}
>>> A.difference(B)
{'b', 'a'}

对称差

两个集合的对称差是只属于其中一个集合,而不属于另一个集合的元素组成的集合。

使用 ^ 操作符执行差集操作,同样地,也可使用方法 symmetric_difference() 完成。

>>> A ^ B
{'b', 'f', 'e', 'a'}
>>> A.symmetric_difference(B)
{'b', 'f', 'e', 'a'}

集合方法

1.add 向集合中添加元素

>>> s = {1, 2, 3, 4, 5, 6}
>>> s.add("s")
>>> s
{1, 2, 3, 4, 5, 6, 's'}

2.clear 清空集合

>>> s = {1, 2, 3, 4, 5, 6}
>>> s.clear()
>>> s
set()

3.copy 返回集合的浅拷贝

>>> s = {1, 2, 3, 4, 5, 6}
>>> new_s = s.copy()
>>> new_s
{1, 2, 3, 4, 5, 6}

4.pop 删除并返回任意的集合元素(如果集合为空,会引发 KeyError)

>>> s = {1, 2, 3, 4, 5, 6}
>>> s.pop()  # pop删除时是无序的随机删除
1
>>> s
{2, 3, 4, 5, 6}

5.remove 删除集合中的一个元素(如果元素不存在,会引发 KeyError)

>>> s = {1, 2, 3, 4, 5, 6}
>>> s.remove(3)
>>> s
{1, 2, 4, 5, 6}

6.discard 删除集合中的一个元素(如果元素不存在,则不执行任何操作)

>>> s = {1, 2, 3, 4, 5, 6}
>>> s.discard("sb")
>>> s
{1, 2, 3, 4, 5, 6}

7.intersection 将两个集合的交集作为一个新集合返回

>>> s = {1, 2, 3, 4, 5, 6}
>>> s2 = {3, 4, 5, 6, 7, 8}
>>> s.intersection(s2)
{3, 4, 5, 6}
>>> s&s2  # 可以达到相同的效果
{3, 4, 5, 6}

8.union 将集合的并集作为一个新集合返回

>>> s = {1, 2, 3, 4, 5, 6}
>>> s2 = {3, 4, 5, 6, 7, 8}
>>> print(s.union(s2))
{1, 2, 3, 4, 5, 6, 7, 8}
>>> print(s|s2)    # 用 | 可以达到相同效果
{1, 2, 3, 4, 5, 6, 7, 8}

9.difference 将两个或多个集合的差集作为一个新集合返回

>>> s = {1, 2, 3, 4, 5, 6}
>>> s2 = {3, 4, 5, 6, 7, 8}
>>> print("差集:",s.difference(s2)) # 去除s和s2中相同元素,删除s2 保留s中剩余元素
差集: {1, 2}
>>> print("差集:",s2.difference(s))  # 去除s和s2中相同元素,删除s2 保留s2中剩余元素<br>
差集: {8, 7}
>>> print("差集:",s - s2)    # 符号 - 可以达到相同结果
差集: {1, 2}
>>> print("差集:",s2 - s)    # 符号 - 可以达到相同结果
差集: {8, 7}

10. symmetric_difference 将两个集合的对称差作为一个新集合返回(两个集合合并删除相同部分,其余保留)

>>> s = {1, 2, 3, 4, 5, 6}
>>> s2 = {3, 4, 5, 6, 7, 8}
>>> s.symmetric_difference(s2)
{1, 2, 7, 8}

11.update 用自己和另一个的并集来更新这个集合

>>> s = {'p', 'y'}
>>> s.update(['t', 'h', 'o', 'n'])    # 添加多个元素
>>> s
{'p', 't', 'o', 'y', 'h', 'n'}
>>> s.update(['H', 'e'], {'l', 'l', 'o'})    # 添加列表和集合
>>> s
{'p', 'H', 't', 'l', 'o', 'y', 'e', 'h', 'n'}

12.intersection_update()  用自己和另一个的交集来更新这个集合

>>> s = {'a', 'b', 'c', 'd', 'q'}
>>> s2 = {'c', 'd', 'e', 'f'}
>>> s.intersection_update(s2)   # 相当于s = s - s2
>>> s
{'c', 'd'}

13.isdisjoint()  如果两个集合有一个空交集,返回 True

>>> s = {1, 2}
>>> s1 = {3, 4}
>>> s2 = {2, 3}
>>> s.isdisjoint(s1)   
True                               # s  和 s1 两个集合的交集为空返回 True
>>> s.isdisjoint(s2)
False                             # s  和 s2 两个集合的交集为 2 不是空 所有返回False

14.issubset() 如果另一个集合包含这个集合,返回 True

>>> s = {1, 2, 3}
>>> s1 = {1, 2, 3, 4}
>>> s2 = {2, 3}
>>> s.issubset(s1)
True                            # 因为 s1 集合 包含 s 集合
>>> s.issubset(s2)
False                           # s2 集合 不包含 s 集合

15.issuperset()  如果这个集合包含另一个集合,返回 True

>>> s = {1, 2, 3}
>>> s1 = {1, 2, 3, 4}
>>> s2 = {2, 3}
>>> s.issuperset(s1)
False                                        # s 集合不包含 s1 集合
>>> s.issuperset(s2)
True                                         # s 集合包含 s2 集合

16.difference_update() 从这个集合中删除另一个集合的所有元素

>>> s = {1, 2, 3}
>>> s1 = {1, 2, 3, 4}
>>> s2 = {2, 3}
>>> s.difference_update(s2)
>>> s
{1}                                                   # s2中的2,3   s集合中也有2,3  所以保留1
>>> s1.difference_update(s2)
>>> s1
{1, 4}

17.symmetric_difference_update() 用自己和另一个的对称差来更新这个集合

>>> s = {1, 2, 3}
>>> s1 = {1, 2, 3, 4}
>>> s2 = {2, 3}
>>> s1.symmetric_difference_update(s)
>>> s1
{4}
>>> s1.symmetric_difference_update(s2)
>>> s1
{2, 3, 4}
>>> s.symmetric_difference_update(s2)
>>> s
{1}

集合与内置函数

下述内置函数通常作用于集合,来执行不同的任务。

函数 描述
all() 如果集合中的所有元素都是 True(或者集合为空),则返回 True。
any() 如果集合中的所有元素都是 True,则返回 True;如果集合为空,则返回 False。
enumerate() 返回一个枚举对象,其中包含了集合中所有元素的索引和值(配对)。
len() 返回集合的长度(元素个数)
max() 返回集合中的最大项
min() 返回集合中的最小项
sorted() 从集合中的元素返回新的排序列表(不排序集合本身)
sum() 返回集合的所有元素之和

125jz网原创文章。发布者:江山如画,转载请注明出处:http://www.125jz.com/4641.html

(1)
江山如画的头像江山如画管理团队
上一篇 2020年1月22日 下午5:24
下一篇 2020年1月22日 下午6:58

99%的人还看了以下文章

  • 全!最详细的mysql新手安装教程

    数据库排名:Oracle,mysql和 Microsoft SQL Server 仍占据前三名。 Mysql是什么? mysql是一个关系型数据库软件,由瑞典MySQL AB公司开发,目前属于Oracle公司。 为什么使用mysql? 1)mysql是开源的,所以你不需要支付额外的费用就能使用。 2)mysql支持大型的数据库。可以处理拥有上千万条记录的大型…

    2023年1月28日 编程开发
    1.2K0
  • 一个完整的servlet验证登录用户名和密码实例

    servlet验证登录用户名和密码实例项目结构 登录页面login.html servlet验证通过后,欢迎页面 登录页面login.html: <body> <form action=”LoginCheck” method=”post”> 用户名:<input type=”text” name=”username” />…

    2020年12月6日
    2.3K0
  • python 集合使用案例:选修课统计

    相关阅读:python 集合的使用,案例详解 本学期学校共开设了3门选修课,一个班有25位学生,选修的情况如下: 选修1号课程的同学有: set1 = {‘张三’, ‘李四’, ‘王五’, ‘马六’, ‘赵七’, ‘钱八’} 选修2号课程的同学有: set2 = {‘姬一’, ‘孙必’, ‘周冲’, ‘王五’, ‘方向’, ‘张玉’} 选修3号课程的同学有:…

    2020年1月22日
    7.6K0
  • python 递归函数使用示例,求两个整数的最大公约数(欧几里得算法)

    用于计算两个整数的最大公约数的递归算法称为欧几里得算法,其计算原理依赖于定理: 两个整数的最大公约数等于其中较小的那个数和两数相除余数的最大公约数。 公式为:gcd(a,b)=gcd(b, a mod b) 递归函数使用示例, def gcd(a, b): if b == 0: return a else: return gcd(b, a % b) prin…

    2020年1月31日
    6.2K0
  • 网络编程 ASP.NET(C#)学习笔记三:数据类型-引用类型

    C#中数据类型主要分为两大类:值类型和引用类型。本节课主要讲解引用类型的分类及C#内置引用类型object 和string。 引用类型包括:类(class、object、string)、接口(interface)、数组(array)、代理(delegate)类包括:用户自定义的类、object基类、字符串类,其中object 、string为C#内置引用类型…

    2018年1月30日
    2.0K0
  • Pillow-优秀的Python图像处理库安装及入门教程

    Pillow库是Python 图像处理库(Python image library)的一个派生分支,提供了广泛的文件格式(BMP,PNG,JPEG等)支持,提供基本的图像处理能力,如: 图像存储、图像显示、改变图像大小,旋转图像,图像格式转换,色场空间转换,图像增强,直方图处理,插值和滤波等等。 比起OpenCV库的图像处理,功能有限,但函数使用非常方便,大…

    2020年12月8日
    1.8K0

发表回复

登录后才能评论