编程-科技

# 加载必要的依赖库
import re # for regular expressions
import pandas as pd
pd.set_option("display.max_colwidth", 200)
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import string
import nltk # for text manipulation
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning) # 不显示警告

# 1.读取数据。读取训练数据和测试数据
train = pd.read_csv("train.csv")
test = pd.read_csv("test.csv")

# 2.数据概览。查看并展示数据集中的指定数据信息。
train.head() # 查看训练数据的前五行

可以看到,数据包含三列,id,label和tweet。label是一个二进制数值,tweet包含了我们需要文本的内容。 看了头部数据之后,我们大概可以开始清理数据了,清理大概可以从下面几个方面入手:

由于隐私保护的问题,Twitter的用户名已经被隐去,取而代之的是‘@user’。 这个标签没有任何实际意义。
我们也考虑去掉标点符号,数字甚至特殊字符,他们对数据分析起不到任何作用。
大多数太短的词起不到什么作用,比如‘pdx’,‘his’,‘all’。所以我们也把这些词去掉。
在第四个数据中,有一个单词‘love’.与此同时,在余下的语料中我们可能会有更多的单词,例如loves,loving,lovable等等。这些词其实都是一个词。如果我们能把这些词都归到它们的根源上,也就是都转换成love,那么我们就可以大大降低不同单词的数量,而不会损失太多信息。

可以看到,数据包含三列,id,label和tweet。label是一个二进制数值,tweet包含了我们需要文本的内容。 看了头部数据之后,我们大概可以开始清理数据了,清理大概可以从下面几个方面入手:

  • 由于隐私保护的问题,Twitter的用户名已经被隐去,取而代之的是‘@user’。 这个标签没有任何实际意义。
  • 我们也考虑去掉标点符号,数字甚至特殊字符,他们对数据分析起不到任何作用。
  • 大多数太短的词起不到什么作用,比如‘pdx’,‘his’,‘all’。所以我们也把这些词去掉。
  • 在第四个数据中,有一个单词‘love’.与此同时,在余下的语料中我们可能会有更多的单词,例如loves,loving,lovable等等。这些词其实都是一个词。如果我们能把这些词都归到它们的根源上,也就是都转换成love,那么我们就可以大大降低不同单词的数量,而不会损失太多信息。

(1)去除‘@user’等无效字符

如上所述,这些文本内容包含很多Twitter标记,这些都是Twitter上面的用户信息。我们需要把这些内容删掉,他们对于数据分析没有什么帮助。 方便起见,先把训练集和测试集合起来,避免在训练集和测试集上重复操作的麻烦。

combi = train._append(test, ignore_index=True) # 将训练集和测试集合并

下面是一个自定义的方法,用于正则匹配删除文本中不想要的内容。它需要两个参数,一个是原始文本,一个是正则规则。这个方法的返回值是原始字符串清除匹配内容后剩下的字符。

def remove_pattern(input_txt, pattern):
r = re.findall(pattern, input_txt)
for i in r:
input_txt = re.sub(i, ”, input_txt)

return input_txt

现在,我们新建一列tidy_tweet ,用于存放处理后的内容,就是上面说的去掉Twitter标记的内容,并查看。

combi[“tidy_tweet”] = np.vectorize(remove_pattern)(combi[“tweet”], “@[\w]*”)
combi.head() # 查看combi的前五行数据

(2)去除标点符号、数字和特殊字符

这些字符都是没有意义的。跟上面的操作一样,我们把这些字符也都剔除掉。 使用替换方法,去掉这些非字母内容

combi[“tidy_tweet”] = combi[“tidy_tweet”].str.replace(“[^a-zA-Z#]”, ” “)
combi.head(5) # 使用head()方法查看前五行数据

(3)移除短单词

这里要注意到底多长的单词应该移除掉。我们选择小于等于三的都去掉。例如hmm,oh这样的都没啥用,删掉这些内容好一些。

combi[“tidy_tweet”] = combi[“tidy_tweet”].apply(lambda x: ” “.join([w for w in x.split() if len(w)>3]))
combi.head() # 查看前五行数据

4)符号化

下面我们要把清洗后的数据集符号化。符号指的是一个个的单词,符号化的过程就是把字符串切分成符号的过程。

tokenized_tweet = combi[‘tidy_tweet’].apply(lambda x: x.split()) # tokenizing
tokenized_tweet.head() # 查看前五行数据

(5)提取词干

提取词干说的是基于规则从单词中去除后缀的过程。例如,play,player,played,plays,playing都是play的变种。

from nltk.stem.porter import *
stemmer = PorterStemmer()

tokenized_tweet = tokenized_tweet.apply(lambda x: [stemmer.stem(i) for i in x]) # stemming
tokenized_tweet.head() # 查看前五行数据

现在,我们把这些符号重新拼回去。

for i in range(len(tokenized_tweet)):
tokenized_tweet[i] = ” “.join(tokenized_tweet[i])

combi[“tidy_tweet”] = tokenized_tweet
combi.head() # 查看前五行数据

以上,我们的数据便处理结束了,tidy_tweet便是我们要提取特征的文本,label则是我们的标签。

2.从清洗后的推文中提取特征

要分析清洗后的数据,就要把它们转换成特征。根据用途来说,文本特征可以使用很多种算法来转换。比如词袋模型(Bag-Of-Words),TF-IDF,word Embeddings之类的方法。 在本文中,我们TF-IDF这个方法。

TF-IDF是基于词频的。它跟词袋模型的区别在于,主要是它还考虑了一个单词在整个语料库上的情况而不是单一文章里的情况。 TF-IDF方法会降低常用单词的权重,同时对于某些在整个数据集上出现较少,但是在部分文章中表现较好的词给予了较高的权重。 让我们来深入了解一下TF-IDF:

  • TF = 单词t在一个文档中出现的次数 / 文档中全部单词的数目
  • IDF = log(N/n),N是全部文档数目,n是单词t出现的文档数目
  • TF-IDF = TF*IDF

下面我们来进行TF-IDF特征提取:

from sklearn.feature_extraction.text import TfidfVectorizer
tfidf_vectorizer = TfidfVectorizer(max_df=0.90, min_df=2, max_features=1000, stop_words=”english”)
# TF-IDF feature matrix
tfidf = tfidf_vectorizer.fit_transform(combi[“tidy_tweet”])

3.使用特征进行数据分析模型训练

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score

# 选择特征输入
train_tfidf = tfidf[:31962,:]
test_tfidf = tfidf[31962:,:]

# 对数据进行划分
xtrain_tfidf, xvalid_tfidf, ytrain, yvalid = train_test_split(train_tfidf, train[‘label’],
random_state=42,
test_size=0.3)
# 调用逻辑回归函数进行训练
lreg = LogisticRegression()
lreg.fit(xtrain_tfidf, ytrain) # training the model

输出:LogisticRegression()

4.数据分析模型预测

from sklearn.metrics import roc_auc_score
from sklearn.metrics import classification_report

#对于测试集x_test进行预测
prediction = lreg.predict_proba(xvalid_tfidf)
prediction_int = prediction[:,1] >= 0.25
prediction_int = prediction_int.astype(np.int_)

# 其他指标计算
print(classification_report(yvalid, prediction_int))

# auc计算
auc=roc_auc_score(yvalid, prediction[:,1])
print(“auc的值:{}”.format(auc))

编程-科技

125jz网原创文章。发布者:江山如画,转载请注明出处:http://www.125jz.com/12309.html

(1)
江山如画的头像江山如画管理团队
上一篇 2023年10月9日 下午2:47
下一篇 2023年10月28日 下午9:08

99%的人还看了以下文章

  • 聚焦2025两会:人工智能40项热点提案

    人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术。DeepSeek的问世加速引爆人工智能,使其成为今年两会的热门关键词之一。2025年政府工作报告就三次提及人工智能,指出持续推进“人工智能+”行动,将数字技术与制造优势、市场优势更好结合起来,支持大模型广泛应用;并建立未来产业投入增长机制,培育具身智能等未来产业,为AI创新与产业升级锚定了发展方向。…

    2025年3月14日
    8370
  • 同事加班1天,你只需10秒!ChatExcel让多表处理快如闪电⚡

    只需10秒,就可以完成多表同时处理,多表合并、多表拆分、多表对比、多表分析、多表创建,都可以轻松完成!超大数据,也可轻松搞定。 官网登录地址:chatexcel.com  目前是beta版,进入工作台后,可以尝试10个表/Sheet,后续会逐步开放到 100 个表/Sheet,1024MB大小文件。 01 多表处理 批量处理100张表格,同事用了1天,现在的…

    2025年4月2日 科技
    8780
  • camtasia studio8汉化破解版 v8.6.0 下载

    camtasia studio8汉化破解版 v8.6.0  软件大小:82.4M 软件语言:中文 软件类型:汉化软件 软件类别:破解软件 / 屏幕录像 Camtasia Studio是由TechSmith开发的一款功能强大的屏幕动作录制工具,能在任何颜色模式下轻松地记录屏幕动作,包括影像、音效、鼠标移动轨迹、解说声音等,功能非常强大。 Camtas…

    2018年12月25日
    13.0K0
  • 人类未来,互联网即将消失,一个有趣的世界即将诞生。

    互联网即将消失,一个高度个性化、互动化的有趣世界——物联网即将诞生。 ——互联网巨头谷歌公司的执行董事长埃里克·施密特 施密特的此番言论可谓自我颠覆。他说:“我可以非常直接地说,互联网将消失。” 一、互联网即将消失,物联网将无所不能 施密特称,未来将有数量巨大的IP地址、传感器、可穿戴设备,以及虽感觉不到却可与之互动的东西,时时刻刻伴随你。 “设想下你走入房…

    2018年12月31日
    8.5K0
  • 华为手机如何隐藏APP和私密照片?

    华为手机有很多实用的功能,但80%的人不知道,像隐藏不想给别人看的APP,私密的照片等。 华为手机如何隐藏APP和照片? 1.华为手机隐藏APP的方法 如图所示,在桌面双指外滑,就会显示已隐藏的应用,点击+就可以选择隐藏哪些应用APP。 这样一来,桌面就变的整洁多了,别人一看全是学习相关的APP,认为你很有上进心呢。 其实自己不想让别人知道的APP都隐藏起来…

    2020年3月15日
    8.6K0
  • 中国人挑手机最看重什么?如何挑选手机?

    现在智能手机已经普及,而且更新换代非常快,那么你在挑手机时最看重哪些呢? 近日,《中国手机消费者需求研究报告》,报告显示:选购手机时,消费者最看重外观,而在手机功能方面,消费者最关注拍照,在配置方面,消费者的关注度集中在电池方面,比例高达81.4%。 《报告》将消费者的关注维度划分为品牌、配置、功能、质量、外观、价格等。其中,消费者最关注的是外观,占比为75…

    2020年2月11日 科技
    3.4K0

发表回复

登录后才能评论