编程-科技

# 加载必要的依赖库
import re # for regular expressions
import pandas as pd
pd.set_option("display.max_colwidth", 200)
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import string
import nltk # for text manipulation
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning) # 不显示警告

# 1.读取数据。读取训练数据和测试数据
train = pd.read_csv("train.csv")
test = pd.read_csv("test.csv")

# 2.数据概览。查看并展示数据集中的指定数据信息。
train.head() # 查看训练数据的前五行

可以看到,数据包含三列,id,label和tweet。label是一个二进制数值,tweet包含了我们需要文本的内容。 看了头部数据之后,我们大概可以开始清理数据了,清理大概可以从下面几个方面入手:

由于隐私保护的问题,Twitter的用户名已经被隐去,取而代之的是‘@user’。 这个标签没有任何实际意义。
我们也考虑去掉标点符号,数字甚至特殊字符,他们对数据分析起不到任何作用。
大多数太短的词起不到什么作用,比如‘pdx’,‘his’,‘all’。所以我们也把这些词去掉。
在第四个数据中,有一个单词‘love’.与此同时,在余下的语料中我们可能会有更多的单词,例如loves,loving,lovable等等。这些词其实都是一个词。如果我们能把这些词都归到它们的根源上,也就是都转换成love,那么我们就可以大大降低不同单词的数量,而不会损失太多信息。

可以看到,数据包含三列,id,label和tweet。label是一个二进制数值,tweet包含了我们需要文本的内容。 看了头部数据之后,我们大概可以开始清理数据了,清理大概可以从下面几个方面入手:

  • 由于隐私保护的问题,Twitter的用户名已经被隐去,取而代之的是‘@user’。 这个标签没有任何实际意义。
  • 我们也考虑去掉标点符号,数字甚至特殊字符,他们对数据分析起不到任何作用。
  • 大多数太短的词起不到什么作用,比如‘pdx’,‘his’,‘all’。所以我们也把这些词去掉。
  • 在第四个数据中,有一个单词‘love’.与此同时,在余下的语料中我们可能会有更多的单词,例如loves,loving,lovable等等。这些词其实都是一个词。如果我们能把这些词都归到它们的根源上,也就是都转换成love,那么我们就可以大大降低不同单词的数量,而不会损失太多信息。

(1)去除‘@user’等无效字符

如上所述,这些文本内容包含很多Twitter标记,这些都是Twitter上面的用户信息。我们需要把这些内容删掉,他们对于数据分析没有什么帮助。 方便起见,先把训练集和测试集合起来,避免在训练集和测试集上重复操作的麻烦。

combi = train._append(test, ignore_index=True) # 将训练集和测试集合并

下面是一个自定义的方法,用于正则匹配删除文本中不想要的内容。它需要两个参数,一个是原始文本,一个是正则规则。这个方法的返回值是原始字符串清除匹配内容后剩下的字符。

def remove_pattern(input_txt, pattern):
r = re.findall(pattern, input_txt)
for i in r:
input_txt = re.sub(i, ”, input_txt)

return input_txt

现在,我们新建一列tidy_tweet ,用于存放处理后的内容,就是上面说的去掉Twitter标记的内容,并查看。

combi[“tidy_tweet”] = np.vectorize(remove_pattern)(combi[“tweet”], “@[\w]*”)
combi.head() # 查看combi的前五行数据

(2)去除标点符号、数字和特殊字符

这些字符都是没有意义的。跟上面的操作一样,我们把这些字符也都剔除掉。 使用替换方法,去掉这些非字母内容

combi[“tidy_tweet”] = combi[“tidy_tweet”].str.replace(“[^a-zA-Z#]”, ” “)
combi.head(5) # 使用head()方法查看前五行数据

(3)移除短单词

这里要注意到底多长的单词应该移除掉。我们选择小于等于三的都去掉。例如hmm,oh这样的都没啥用,删掉这些内容好一些。

combi[“tidy_tweet”] = combi[“tidy_tweet”].apply(lambda x: ” “.join([w for w in x.split() if len(w)>3]))
combi.head() # 查看前五行数据

4)符号化

下面我们要把清洗后的数据集符号化。符号指的是一个个的单词,符号化的过程就是把字符串切分成符号的过程。

tokenized_tweet = combi[‘tidy_tweet’].apply(lambda x: x.split()) # tokenizing
tokenized_tweet.head() # 查看前五行数据

(5)提取词干

提取词干说的是基于规则从单词中去除后缀的过程。例如,play,player,played,plays,playing都是play的变种。

from nltk.stem.porter import *
stemmer = PorterStemmer()

tokenized_tweet = tokenized_tweet.apply(lambda x: [stemmer.stem(i) for i in x]) # stemming
tokenized_tweet.head() # 查看前五行数据

现在,我们把这些符号重新拼回去。

for i in range(len(tokenized_tweet)):
tokenized_tweet[i] = ” “.join(tokenized_tweet[i])

combi[“tidy_tweet”] = tokenized_tweet
combi.head() # 查看前五行数据

以上,我们的数据便处理结束了,tidy_tweet便是我们要提取特征的文本,label则是我们的标签。

2.从清洗后的推文中提取特征

要分析清洗后的数据,就要把它们转换成特征。根据用途来说,文本特征可以使用很多种算法来转换。比如词袋模型(Bag-Of-Words),TF-IDF,word Embeddings之类的方法。 在本文中,我们TF-IDF这个方法。

TF-IDF是基于词频的。它跟词袋模型的区别在于,主要是它还考虑了一个单词在整个语料库上的情况而不是单一文章里的情况。 TF-IDF方法会降低常用单词的权重,同时对于某些在整个数据集上出现较少,但是在部分文章中表现较好的词给予了较高的权重。 让我们来深入了解一下TF-IDF:

  • TF = 单词t在一个文档中出现的次数 / 文档中全部单词的数目
  • IDF = log(N/n),N是全部文档数目,n是单词t出现的文档数目
  • TF-IDF = TF*IDF

下面我们来进行TF-IDF特征提取:

from sklearn.feature_extraction.text import TfidfVectorizer
tfidf_vectorizer = TfidfVectorizer(max_df=0.90, min_df=2, max_features=1000, stop_words=”english”)
# TF-IDF feature matrix
tfidf = tfidf_vectorizer.fit_transform(combi[“tidy_tweet”])

3.使用特征进行数据分析模型训练

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score

# 选择特征输入
train_tfidf = tfidf[:31962,:]
test_tfidf = tfidf[31962:,:]

# 对数据进行划分
xtrain_tfidf, xvalid_tfidf, ytrain, yvalid = train_test_split(train_tfidf, train[‘label’],
random_state=42,
test_size=0.3)
# 调用逻辑回归函数进行训练
lreg = LogisticRegression()
lreg.fit(xtrain_tfidf, ytrain) # training the model

输出:LogisticRegression()

4.数据分析模型预测

from sklearn.metrics import roc_auc_score
from sklearn.metrics import classification_report

#对于测试集x_test进行预测
prediction = lreg.predict_proba(xvalid_tfidf)
prediction_int = prediction[:,1] >= 0.25
prediction_int = prediction_int.astype(np.int_)

# 其他指标计算
print(classification_report(yvalid, prediction_int))

# auc计算
auc=roc_auc_score(yvalid, prediction[:,1])
print(“auc的值:{}”.format(auc))

编程-科技

125jz网原创文章。发布者:江山如画,转载请注明出处:http://www.125jz.com/12309.html

(1)
江山如画的头像江山如画管理团队
上一篇 2023年10月9日 下午2:47
下一篇 2023年10月28日

99%的人还看了以下文章

  • 原码,补码,反码转换例题精讲

    原码,反码,补码,都为二进制数 0为正,1为负 原码=符号位+原值 反码=原码的符号位不变+原值全部取反 补码=反码+1 例题1:已知原码求反码与补码 例如 令x的原码为10110100,求其补码与反码? 原码:10110100 反码:11001011 补码:11001100 补码=符号位不变+原数值 反码=补码-1 原码=反码的符号位不变+原数值全部取反 …

    科技 2020年4月26日
    4.9K1
  • 分区助手:不重装系统,也能快速改变分区大小

    买完电脑(组装机),让装机的朋友把系统安装好,磁盘分区分成5个分区。当时用的XP,系统盘就留了20G,想着软件放D盘,其他放E、F、G就可以了。 结果系统一路升级,vista还没用两天,又升到win7,一路到win10系统了。20G的系统盘就尴尬了。看看下图吧: 装完系统,C盘就满了,打开几个网页就一直提示系统盘存储已满。系统分区C盘太小了,如果重新分区,怎…

    2018年1月30日
    4.4K0
  • 惊!10个美女明星代言的手机广告,最后一个天雷滚滚!

    小编今天扒拉了一下代言过手机的明星们,哇真是不少,特别是美女明星…… 代言过手机的大牌美女明星有如颖随行-赵丽颖、国民闺女-关晓彤、红米手机-刘诗诗、美图代言-国民女神-Angelababy、联想手机-范爷-范冰冰、OPPO-小幂蜂-杨幂、张曼玉-康佳、SHE -英华达、 林志玲代言LG、赵薇、李宇春- 厦新 看看这些唯美的手机美女图片吧,最后一个绝对把你雷…

    2020年2月25日 科技
    13.3K0
  • 机器学习:欧氏距离计算例题详解-全国人工智能技能知识竞赛

    给定三个点(1,4)、(2,3)、(2,5),计算他们的欧氏距离最小值是(B) A、1     B、1.4   C、0    D、2 欧式距离也称欧几里得距离,是最常见的距离度量,衡量的是多维空间中两个点之间的 绝对距离 。 以古希腊数学家欧几里得命名的距离,也就是我们直观的两点之间直线最短的直线距离。 欧氏距离定义: 欧氏距离( Euclidean dis…

    2022年11月22日 科技
    1.6K3
  • 参考文献书写格式、参考文献格式生成器(写论文必备)

    一、参考文献的类型 参考文献(即引文出处)的类型以单字母方式标识,具体如下:M——专著         C——论文集       N——报纸文章J——期刊文章      D——学位论文     R——报告对于不属于上述的文献类型,采用字母“Z”标识。对于英文参考文献,还应注意以下两点:①作者姓名采用“姓在前名在后”原则,具体格式是: 姓,名字的首字母. 如:…

    2019年4月22日
    10.8K1

发表回复

登录后才能评论