编程-科技

# 加载必要的依赖库
import re # for regular expressions
import pandas as pd
pd.set_option("display.max_colwidth", 200)
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import string
import nltk # for text manipulation
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning) # 不显示警告

# 1.读取数据。读取训练数据和测试数据
train = pd.read_csv("train.csv")
test = pd.read_csv("test.csv")

# 2.数据概览。查看并展示数据集中的指定数据信息。
train.head() # 查看训练数据的前五行

可以看到,数据包含三列,id,label和tweet。label是一个二进制数值,tweet包含了我们需要文本的内容。 看了头部数据之后,我们大概可以开始清理数据了,清理大概可以从下面几个方面入手:

由于隐私保护的问题,Twitter的用户名已经被隐去,取而代之的是‘@user’。 这个标签没有任何实际意义。
我们也考虑去掉标点符号,数字甚至特殊字符,他们对数据分析起不到任何作用。
大多数太短的词起不到什么作用,比如‘pdx’,‘his’,‘all’。所以我们也把这些词去掉。
在第四个数据中,有一个单词‘love’.与此同时,在余下的语料中我们可能会有更多的单词,例如loves,loving,lovable等等。这些词其实都是一个词。如果我们能把这些词都归到它们的根源上,也就是都转换成love,那么我们就可以大大降低不同单词的数量,而不会损失太多信息。

可以看到,数据包含三列,id,label和tweet。label是一个二进制数值,tweet包含了我们需要文本的内容。 看了头部数据之后,我们大概可以开始清理数据了,清理大概可以从下面几个方面入手:

  • 由于隐私保护的问题,Twitter的用户名已经被隐去,取而代之的是‘@user’。 这个标签没有任何实际意义。
  • 我们也考虑去掉标点符号,数字甚至特殊字符,他们对数据分析起不到任何作用。
  • 大多数太短的词起不到什么作用,比如‘pdx’,‘his’,‘all’。所以我们也把这些词去掉。
  • 在第四个数据中,有一个单词‘love’.与此同时,在余下的语料中我们可能会有更多的单词,例如loves,loving,lovable等等。这些词其实都是一个词。如果我们能把这些词都归到它们的根源上,也就是都转换成love,那么我们就可以大大降低不同单词的数量,而不会损失太多信息。

(1)去除‘@user’等无效字符

如上所述,这些文本内容包含很多Twitter标记,这些都是Twitter上面的用户信息。我们需要把这些内容删掉,他们对于数据分析没有什么帮助。 方便起见,先把训练集和测试集合起来,避免在训练集和测试集上重复操作的麻烦。

combi = train._append(test, ignore_index=True) # 将训练集和测试集合并

下面是一个自定义的方法,用于正则匹配删除文本中不想要的内容。它需要两个参数,一个是原始文本,一个是正则规则。这个方法的返回值是原始字符串清除匹配内容后剩下的字符。

def remove_pattern(input_txt, pattern):
r = re.findall(pattern, input_txt)
for i in r:
input_txt = re.sub(i, ”, input_txt)

return input_txt

现在,我们新建一列tidy_tweet ,用于存放处理后的内容,就是上面说的去掉Twitter标记的内容,并查看。

combi[“tidy_tweet”] = np.vectorize(remove_pattern)(combi[“tweet”], “@[\w]*”)
combi.head() # 查看combi的前五行数据

(2)去除标点符号、数字和特殊字符

这些字符都是没有意义的。跟上面的操作一样,我们把这些字符也都剔除掉。 使用替换方法,去掉这些非字母内容

combi[“tidy_tweet”] = combi[“tidy_tweet”].str.replace(“[^a-zA-Z#]”, ” “)
combi.head(5) # 使用head()方法查看前五行数据

(3)移除短单词

这里要注意到底多长的单词应该移除掉。我们选择小于等于三的都去掉。例如hmm,oh这样的都没啥用,删掉这些内容好一些。

combi[“tidy_tweet”] = combi[“tidy_tweet”].apply(lambda x: ” “.join([w for w in x.split() if len(w)>3]))
combi.head() # 查看前五行数据

4)符号化

下面我们要把清洗后的数据集符号化。符号指的是一个个的单词,符号化的过程就是把字符串切分成符号的过程。

tokenized_tweet = combi[‘tidy_tweet’].apply(lambda x: x.split()) # tokenizing
tokenized_tweet.head() # 查看前五行数据

(5)提取词干

提取词干说的是基于规则从单词中去除后缀的过程。例如,play,player,played,plays,playing都是play的变种。

from nltk.stem.porter import *
stemmer = PorterStemmer()

tokenized_tweet = tokenized_tweet.apply(lambda x: [stemmer.stem(i) for i in x]) # stemming
tokenized_tweet.head() # 查看前五行数据

现在,我们把这些符号重新拼回去。

for i in range(len(tokenized_tweet)):
tokenized_tweet[i] = ” “.join(tokenized_tweet[i])

combi[“tidy_tweet”] = tokenized_tweet
combi.head() # 查看前五行数据

以上,我们的数据便处理结束了,tidy_tweet便是我们要提取特征的文本,label则是我们的标签。

2.从清洗后的推文中提取特征

要分析清洗后的数据,就要把它们转换成特征。根据用途来说,文本特征可以使用很多种算法来转换。比如词袋模型(Bag-Of-Words),TF-IDF,word Embeddings之类的方法。 在本文中,我们TF-IDF这个方法。

TF-IDF是基于词频的。它跟词袋模型的区别在于,主要是它还考虑了一个单词在整个语料库上的情况而不是单一文章里的情况。 TF-IDF方法会降低常用单词的权重,同时对于某些在整个数据集上出现较少,但是在部分文章中表现较好的词给予了较高的权重。 让我们来深入了解一下TF-IDF:

  • TF = 单词t在一个文档中出现的次数 / 文档中全部单词的数目
  • IDF = log(N/n),N是全部文档数目,n是单词t出现的文档数目
  • TF-IDF = TF*IDF

下面我们来进行TF-IDF特征提取:

from sklearn.feature_extraction.text import TfidfVectorizer
tfidf_vectorizer = TfidfVectorizer(max_df=0.90, min_df=2, max_features=1000, stop_words=”english”)
# TF-IDF feature matrix
tfidf = tfidf_vectorizer.fit_transform(combi[“tidy_tweet”])

3.使用特征进行数据分析模型训练

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score

# 选择特征输入
train_tfidf = tfidf[:31962,:]
test_tfidf = tfidf[31962:,:]

# 对数据进行划分
xtrain_tfidf, xvalid_tfidf, ytrain, yvalid = train_test_split(train_tfidf, train[‘label’],
random_state=42,
test_size=0.3)
# 调用逻辑回归函数进行训练
lreg = LogisticRegression()
lreg.fit(xtrain_tfidf, ytrain) # training the model

输出:LogisticRegression()

4.数据分析模型预测

from sklearn.metrics import roc_auc_score
from sklearn.metrics import classification_report

#对于测试集x_test进行预测
prediction = lreg.predict_proba(xvalid_tfidf)
prediction_int = prediction[:,1] >= 0.25
prediction_int = prediction_int.astype(np.int_)

# 其他指标计算
print(classification_report(yvalid, prediction_int))

# auc计算
auc=roc_auc_score(yvalid, prediction[:,1])
print(“auc的值:{}”.format(auc))

编程-科技

125jz网原创文章。发布者:江山如画,转载请注明出处:http://www.125jz.com/12309.html

(1)
江山如画的头像江山如画管理团队
上一篇 2023年10月9日 下午2:47
下一篇 2023年10月28日 下午9:08

99%的人还看了以下文章

  • 免费!AI 绘画工具 Ideogram推荐

    一、Ideogram 简介 网站直达: https://ideogram.ai/ (需要谷歌邮箱登录后使用) 官方 discord 社区: https://discord.gg/cuqZAwbK Ideogram 是由前 Google Brain 员工创立的,于 8 月 23 日正式推出,它能根据文本生成各种风格的图像,帮助人们将创意轻松变为现实。Ideog…

    2023年8月30日 科技
    1.9K0
  • 桌面右键没有新建文本文档、新建word文档等的解决方法

    不知道什么原因电脑右键菜单,新建,没有文本文档和word文档了,亲测这个方法成功找回,现分享给有需要的人! 一、桌面右键没有新建文本文档的解决方法 新建一个文本文档或记事本,将下面的代码复制到里面,并保存 Windows Registry Editor Version 5.00 [HKEY_CLASSES_ROOT\.txt] @=”txtfile” “Pe…

    2018年2月11日
    7.4K0
  • camtasia studio8汉化破解版 v8.6.0 下载

    camtasia studio8汉化破解版 v8.6.0  软件大小:82.4M 软件语言:中文 软件类型:汉化软件 软件类别:破解软件 / 屏幕录像 Camtasia Studio是由TechSmith开发的一款功能强大的屏幕动作录制工具,能在任何颜色模式下轻松地记录屏幕动作,包括影像、音效、鼠标移动轨迹、解说声音等,功能非常强大。 Camtas…

    2018年12月25日
    10.6K0
  • 华为nova3和荣耀10对比,华为nova3和荣耀10选哪个?

    华为nova3和荣耀10这两款手机都是定位简约时尚的年轻消费群体,作为两款定位和风格都比较相近的手机,华为nova3和荣耀10选哪个?华为nova3和荣耀10有什么区别?

    2018年7月24日 科技
    7.9K1
  • 你必须知道的物联网应用中的三项关键技术

    物联网因为其“连接一切”的特点(“连接一切”是马化腾在2013的WE大会上提出来的未来第一路标),它具有很多互联网所没有的新特性。 比如,互联网已经连接了所有的人和信息内容,提供标准化服务,而物联网则要考虑各种各样的硬件融合,多种场景的应用,人们的习惯差异等问题。 相对于互联网,物联网需要更有深度的内容和服务,以及更加差异化的应用,也将更加的人性化,这也符合…

    2018年12月31日
    10.5K0
  • 2019年度山东省重点研发计划 (重大科技创新工程第二批)项目申报指南

    一、高端自主芯片 针对我省芯片产业存在的产业基础薄弱、持续创新能力不强、产品大量依赖进口等问题,2019年芯片领域围绕芯片材料制备、设计与封装测试、功能芯片研发和量子技术等四个研究方向,集中优势力量突破制约产业创新发展的重大技术瓶颈,支撑我省芯片产业加速发展。 (一)芯片材料制备 开展宽禁带半导体单晶衬底和外延材料研究,突破生长、掺杂、缺陷控制和光电性能调控…

    2019年4月11日
    6.2K0

发表回复

登录后才能评论